(intel)

what's inside”

ACCELERATE YOUR SPARK WITH
INTEL OPTANE DC PERSISTENT
MEMORY

INTEL SSP

Notices and Disclaimers

© 2018 Intel Corporation. Intel, the Intel logo, 3D XPoint, Optane, Xeon, Xeon logos, and Intel Optane logo are trademarks of Intel Corporation in the U.S. and/or other countries.
All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

The cost reduction scenarios described are intended to enable you to get a better understanding of how the purchase of a given Intel based product, combined with a number of situation-specific
variables, might affect future costs and savings. Circumstances will vary and there may be unaccounted-for costs related to the use and deployment of a given product. Nothing in this document
should be interpreted as either a promise of or contract for a given level of costs or cost reduction.

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and
may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily representative of other benchmarks and other benchmark results may show
greater or lesser impact from mitigations.

Results have been estimated based on tests conducted on pre-production systems, and provided to you for informational purposes. Any differences in your system hardware, software or
configuration may affect your actual performance. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance results are based on testing as of 03-14-2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to www.intel.com/benchmarks.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice
Revision #20110804.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks

Agenda

DCPMM Introduction
DCPMM on Spark
Spark SQL

Machine Learning - Kmeans

(intel) OPTANE DC O»

FERSISTENT MEMORY ;

(inte OPTANE DCO»
.
(inteD 30 NAND §50 E
==

COLD

HDD/TAPE

————-—) (inteD OPTANE DCO»

PERSISTENT MEMORY

N b
SRS Ssses GSRSE Esnes Esmss) Ssmss
~
~

* DIMM population shown as an example only. S

sl DIMM Capacity —

* 128, 256, 512GB

I

® 2666 MT/sec

= Capacity per CPU

e 3TB (not including DRAM)

* DDRA4 electrical & physical
* Close to DRAM latency
* Cache line size access

Memory Mode & AppDirect

APPLICATION
APPLICATION

VOLATILE MEMORY POOL

DRAM i DRAM AS CACHE E
|

APP DIRECT MODE OPTIONS

No Code Changes Required
Operates in Blocks like SSD/HDD
* Traditional read/write

* Works with Existing File
Systems

« Atomicity at block level
* Block size configurable
« 4K,512B*
NVDIMM Driver required
* Support starting Kernel 4.2
Configured as Boot Device

Higher Endurance than Enterprise
SSDs

High Performance Block Storage

* Low Latency, higher BW, High
IOPs

*Requires Linux

Legacy Storage APIs

Storage APIs with DAX
(AppDirect)

r
A
Standard Standard Standard
Raw Device File API File API
Access
“%X”
(__
FILE SYSTEM
t A MMU
! i
BIT | S5 |

PERSISTENT MEMORY

30VdS TaNd3IMA 30VdS d3SN

J4VMAAVYH

Code changes may be required*
Bypasses file system page cache
Requires DAX enabled file system

No Kernel Code or interrupts
No interrupts
Fastest 10 path possible

* Code changes required for load/store direct
access if the application does not already support
this.

18/05/17 14:09:55 INFO storage.ShuffleBlockFetcherIterator: Getting 5262 non-empty blocks out of 6390 blocks

18/05/17 14:09:55 INFO storage.ShuffleBlockFetcherIterator: Started 29 remote fetches in 14 ms Tasks

18/05/17 14:09:55 INFO aggregate.ObjectAggregationIterator: Aggregation hash map reaches threshold capacity (128 entries), spilling and £

18/05/17 14:09:57 INFO python.PythonRunner: Times: total = 735, boot = -1711, init = 1732, finish = 714 Shuffle Read Shuffle Write Shuffle
18/05/17 14:09:58 INFO python.PythonRunner: Times: total = 1074, boot = -1412, init = 1417, finish = 1069 " .

18/05/17 14:09:58 INFO executor.Executor: Finished task 164.0 in stage 1.0 (TID 6554). 2359 bytes result sent to driver Index GC Size / Write Size / Shuffle s“" st
18/05/17 14:09:58 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 6583 A ID Attempt Status Locality Level Executor ID / Host Launch Time Duration Time Records Time Records (Memory) (Disk)
18/05/17 14:09:58 INFO executor.Executor: Running task 193.0 in stage 1.0 (TID 6583)

18/05/17 14:09:58 INFO storage.ShuffleBlockFetcherIterator: CGetting 5249 non-empty blocks out of 6390 blocks 0 20 0 SUCCESS NODE LOCAL 0/ 2016/02/16 258 58 1477.6 KB/ 02s 43.1 MB/ 302.8 MB 23.6 MB
18/05/17 14:09:58 INFO storage.ShuffleBlockFetcherIterator: Started 4 remote fetches in 7 ms 2

18/05/17 14:09:58 INFO aggregate.ObjectAggregationIterator: Aggregation hash map reaches threshold capacity (128 entries), spilling and £ 192'168‘1'135<tpg'-c°m‘a“ 11:22:57 19089 1221696

18/05/17 14:10:27
18/05/17 14:10:27 ERROR uti
java.lang.OutOfMemoryError

inedExecutorBackend: RECEIVED SIGNAL TERM
exception in thread stdout writer for python 1 21 0 SUCCESS NODE_LOCAL 0/ 2016/02/16 23s 4s 14789 KB/ 01s 43.1MB/ 367.4 MB 28.0MB

Fresian 2 N ondl 192-168-1-135.tpgl.com.au 11:23:22 19090 1221760
at scala.collectio; Array$class.ensureSize(ResizableArray.scala:103)
at scala.collection.mutable.ArrayBuffer.ensuresSize(ArrayBuffer.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plusSeqg(ArrayBuffer.scala:99) 2 20 SUCCESS NODE_LOCAL 0/ 2016/02/16 21s 4s 1478.4 KB/ 0.1s 43.1MB/ 367.4 MB 28.5MB
Aggregated Metrics by Executor S - T 192-168-1-135.tpgi.com.au 11:23:45 19089 1221696
— S — — e e m—— 3 23 0 SUCCESS NODE_LOCAL 0/ 2016/02/16 22 5s 14784KB/ 01s 43.1MB/ 3674MB 27.2MB
s 192-168-1-135.tpgi.com.au 11:24:06 19090 1221760
— - 24 0 SUCCESS NODE_LOCAL 0/ 2016/02/16 20s 3s 1478.4 KB/ 0.1s 43.1MB/ 393.9 MB 25.4MB
sks
192-168-1-135.tpgl.com.au 11:24:28 19091 1221824
ingex Launch Gc input size
1D Atempt Staws LocalityLevel ExecutoriDIHost Time Duration Time /Records Erors
0o o FALED PROCESS_LOCAL 2 3 25 524MB/0 fava lang OuiOMemonError Java heap space 5 25 0 SUCCESS NODE_LOCAL 0/ 2016/02/16 21s 4s 14775 KB/ 01s 43.1MB/ 367.4 MB 26.9MB

14331pp sss. com seva. 10

192-168-1-135.tpgl.com.au 11:24:48 19091 1221824

0o s
1 4 0 FALED PROCE
1 6 1 FALED PR

nining tasks) Reason Container marked as fafed
14332pp 583 s 1

Out of memory Large Spill

. Spark
InpggaV 9 1/0 intensive Workload i J_|7 ﬁ
|] i |

SR e e e e B B R

r
I
|
I
|
I
|
I
|
I] (from Decision Support
: : Queries)

OAP Cache
: : K VY RDD Cache

- -means VVorkloa

I Cache Hit Cache Miss |
I I ™ == Tied Storage
4 | I i DN 2N S Compute Layer
I === "1 [~~~ B Rttt ettt - 1A g P T
1 I I
| | | 1O Layer
1 I I
1 [|
|
1 OAP DCPMM optimization (Against DRAM) RDD cache DCPMM optimization (Against DRAM):
1 o High Capacity, Less Cache Miss o Reduce DRAM footprint
! ? » Avoid heavy cost disk read « Higher Capacity to cache more data
: j o Status: To Be Added m o Status: To Be Added
| T |
I | I |
1 I I
I | : | N\ 2 H :
1 I I
I DRAM I I DRAM :
1 I I
I I I :
|
I
|
L

Use Case 1: Spark SQL

OAP I/O Cache

OAP (Optimized Analytics Package)

Goal

» |O cache is critical for 1/O intensive workload especially on low bandwidth environment (e.g. Cloud, On-Prem
HDD based system)

« Make full use of the advantage from DCPMM to speed up Spark SQL
» High capacity and high throughput
* No latency and reduced DRAM footprint

« Better performance per TCO
Feature
* Fine grain cache (e.g. column chunk for Parquet) columnar based cache
« Cache aware scheduler (V2 API via preferred location)
« Self managed DCPMM pool (no extra GC overhead)

« Easy to use (easily turn on/off), transparent to user (no changes for their queries)
https://github.com/Intel-bigdata/OAP

https://github.com/Intel-bigdata/OAP

SPARK DCPMM FULL SOFTWARE STACK
Unmodified SQL

Spark SQL Unchanged Spark
OAP Provide scheduler and fine gain cache based on Data Source API
Native library VMEMCACHE Abstract away hardware details and cache implementation

to access DCPMM

PMEM-AWARE : :
File SYSTEM Expose persistent memory as memory-mapped files (DAX)

Deployment Overview

Server 1 Server 2

Spark Gateway < >
(e.qa. ThriftServer. Soarl§ shell)

AN

SQL

Cache Aware Scheduler J
:| [Task scheduled

Spark Executor

Cached Data Source (v1/iv2) 1

Native library (vmemcache) I

Cache Hit Cache Miss

1)

Intel Optane DC Persistent
Memory

Local Storage (HDD)

Cache Design - Problem statement

Local LRU cache

Support for large capacities available with persistent memory (many terabytes per server)
Lightweight, efficient and embeddable

In-memory

Scalable

Cache Design - Fragmentation

. A= Noc{128);

Manual dynamic memory Bzmguﬁuai; 0 64 128 192 256 320 384
management a’la C = malloc(128);
dimalloc/jemalloc/tcmalloc/palloc
causes fragmentation A B C

Applications with substantial | 0 64 128 192 256 320 384
expected runtime durations needa ~ ree
way to combat this problem '

Compacting GC (Java, .NET) .
Defragmentation (Redis, Apache 0 64 28 192 236 320 384
|gnite) malloc(256);

Slab allocation (memcached) NULL (errno == ENOMEM)

Especially so if there’s substantial
expected variety in allocated sizes

If fragmentation Is unavoidable,
and defragmentation/compacting
Is CPU and memory bandwidth

= malloc(128); 0 64 128 192 256 320 384
= malloc(128);
= malloc{128);

Cym 1=

A B C

Intensive, let’'s embrace it! S S ——
i i free[ﬁ};.

Usually only done in relatively o)

large blocks In file-systems. R e)

But on PMEM, we are no longer "™ ———

restricted by large transfer units w7 ° ° °

64 128 192 256 320 384

(sectors, pages etc)

Performance of libvmemcache
was bottlenecked by naive
Implementation of LRU based
on a doubly-linked list.

With 100st of threads, most of
the time of any request was
spent
waiting on a list lock...

Locking per-node doesn't solve
the problem...

LEAST
USED

A

B

c

List entry

List entry

List entry

Value

Value

Value

MOST
USED

get(B)

LEAST
USED

A

c

B

List entry

List entry

List entry

Walue

Value

Walue

MOST

USED

A

A

=

’_1‘

These three nodes

must be locked!

Our solution was quite
simple.

We've added a wait-free
ringbuffer which buffers
the list-move operations

This way, the list only
needs to get locked
during eviction or when
the ringbuffer Is full.

LEAST
USED

LEAST
USED

List entry e List entry L List entry
MOST
USED
Yalue Walue Yalue
wait-fi g buffi
get(B)
A &
List entry ist entry e List entry
MOST
USED
Yalue Yalue

Cache Design - Lightweight, embeddable, In-
memory caching

VMEMcache *cache = vmemcache new("/tmp", VMEMCACHE MIN POOL,
VMEMCACHE_MIN_ EXTENT, VMEMCACHE REPLACEMENT_LRU);

const char *key = "foo";
vmemcache_put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];

ssize t len = vmemcache_get(cache, key, strlen(key),
buf, sizeof(buf), 0, NULL);

vmemcache delete(cache);

libvmemcache has normal get/put APIs, optional replacement policy, and configurable extent size

Works with terabyte-sized in-memory workloads without a sweat, with very high space utilization.
Also works on regular DRAM.

https://github.com/pmem/vmemcache

https://github.com/pmem/vmemcache

Parquet File

Guava Based

Cache

Task #1
Read Data Column B in Executor #1
Row Group A,B,C in CacheManager

Column Chunk #1 FI ne G ral N Cache File X -> Executor #1 Executor #2
Column Chunk #2 20€ File Y -> Executor #2 CacheManager
S8 :

Column Chunk #N File Z -> Executor #N

RowGroup #1 Task #2 _
Read Data Column B in

Report
Row Group AB,Cin ;
RowGroup #2 File Y Executor #N
CacheManager,

Vmemcache

RowGroup #N B

" PT A‘NE“D;}); o Cache Status & Report

PERSISTENT MEMORY

DCPMM DRAM
Hardware | DRAM 192GB (12x 16GB DDR4) 768GB (24x 32GB DDR4)
Intel Optane DC Persistent Memory 1TB (0s: 8 x 128GB) N/A
DCPMM Mode App Direct (vmemcache) N/A
SSD N/A N/A
CPU 2 * Cascadelake 8280M (Thread(s) per core: 2, Core(s) per socket: 28, Socket(s): 2 CPU max MHz:
4000.0000 CPU min MHz: 1000.0000 L1d cache: 32K, L1i cache: 32K, L2 cache: 1024K, L3 cache: 39424)
OS 4.20.4-200.fc29.x86_64 (BKC: WW06'19, BIOS: SE5C620.86B.0D.01.0134.100420181737)
Software | QAP 1TB DCPMM based OAP cache 610GB DRAM based OAP cache
Hadoop 8 * HDD disk (ST1000NX0313, 1-replica uncompressed & plain encoded data on Hadoop)
Spark 1 * Driver (5GB) + 2 * Executor (62 cores, 74GB), spark.sgl.oap.rowgroup.size=1MB
JDK Oracle JDK 1.8.0_161
Workload | pata Scale 2TB, 3TB, 4TB

Decision Making Queries

9 1/0O intensive queries

Multi-Tenants

9 threads (Fair scheduled)

9 1/0 intensive queries performance (in sec, Lower Better, 2TB)
B DRAM | DCPMM

v 163.86 161.38 161.8 On Premlse

14444 14488

150 132.81.137.38 e 128510371998 132:81 PerfOrmanCe

116.94 g 117.2

.20

100. 1 103.3) 99.44 100.1

100

50

98 68 73 42 43 19 52 55 63 GEOMEAN

With 2TB Data Scale, both DCPMM and DRAM based OAP cache can hold the full dataset
(613GB). DCPMM is 24.6% (=1- 100.1/132.81) performance lower than DRAM as measured on 9
/O intensive decision making queries.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: See page20.Test by Intel on 24/02/2019.

*The performance gain can be much lower if 1O is improved (e.g. compression &

encoding enabled) or some hacking codes fixed (e.g. NUMA scheduler)

http://www.intel.com/benchmarks

9 1/0 intensive queries performance (In Sec, Lower Better, 3TB)
B DRAM [DCPMM
2000 1843.052 1842.353 1 7g¢ c07 1844.576.1848.424.1846.133.1846.822 ., .
1634.833 P
On Premise
Performance
1000
500
226.2499 §22:7.2852 B8 1010 B190.661 §190.1051 f207.6492 §189 1262 [230-5413 F213.5743 §206.706
0
98 68 73 42 43 19 52 55 63 GEOMEAN

With 3TB Data Scale, only DCPMM based OAP cache can hold the full dataset (920GB).
DCPMM shows ©X* performance gain over DRAM as measured on 9 I/O intensive decision
making queries.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: See page20.Test by Intel on 24/02/2019.

*The performance gain can be much lower if 10 is improved (e.g. compression &

encoding enabled) or some hacking codes fixed (e.g. NUMA scheduler)

http://www.intel.com/benchmarks

DCPMM Disk Bandwidth DRAM Disk Bandwidth

500000 500000

450000 450000

400000 .l 400000 } | |

350000 1 o ' 350000
£ 300000 |} 2 300000
é l Values g Values
2 250000 + = 250000
_E e Sum of rkB/s % s SUM O rkB/5
g 200000 ’ | —— Sum of wke/s & 200000 H — —sum of wk/s

150000 -

’ 150000 I I I I
100000
' e |1 |
50000 1 50000
0 e 0 _da . P

OAP Cache works avoiding disk read (blue) Disk read (blue) comes from Disk read (blue) happens from time to time
and only disk write for shuffle (red) shuffle data

e Input data is all cached in DCPMM while partially for DRAM
e DCPMM reaches up to bandwidth while DRAM case it's bounded by disk IO which is only about

e OAP cache doesn'’t apply for shuffle data (intermediate data) that extra 10 pressure put onto DRAM case
e In DCPMM case Spark reads from disk about while DRAM one reads about

9 1/0 intensive queries performance (in sec, Lower Better, 4TB)
B DRAM [DCPMM
3000 .
2507.04 O P m
2209.23 220871 221315 2211.89 2211.38 221547 229879 9215,982252.803411 n remise
g Performance
H32.: .
1469.24 470,81 1353 674528

1222.11 1216.83 1236.74 K1218.19 [KI218.3

1000
0
98 68 73 42 43 19 52 55 63 GEOMEAN

With 4TB Data Scale, none of DCPMM and DRAM based OAP cache can hold the full dataset
(1226.7GB). DCPMM shows 1.66X* (=2252.80/1353.67) performance gain over DRAM as
measured on 9 I/O intensive decision making queries.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: See page20.Test by Intel on 24/02/2019.

*The performance gain can be much lower if 1O is improved (e.g. compression &

encoding enabled) or some hacking codes fixed (e.g. NUMA scheduler)

http://www.intel.com/benchmarks

Use Case 2: Machine Learning

Spark K-means

« Spark Storage Level

« DCPMM Storage Level

DRAM (on heap)

DRAM (off heap)

Byte buffer

(intel) OPTANE DC O

PERSISTENT MEMORY

Decompression

Byte buffer |

N iterations

Vs
¢ Step 1: For each record in the cache, Sum the
/ vectors with the same closet centroid

For Each Record in
the Cache

Cache #1
(DRAM + DISK)

For Each Record in
the Cache

Cache #2
(DRAM + DISK)

2 Iterations for all

of the cache data
For Each Record in [EOA

the Cache

Cache #3
(DRAM + DISK)

to get the K
centroids in a
random mode

Update the new Centroids

For Each Record in

LR R IR R _—
N———'——————|———|———|——’——/
— e o o fem o e S e e e e mEs e ——

the Cache
Cache #N For Each Record in
(DRAM + DISK) the Cache
| \
\ Spark Executor \
HDFS X D - / . C,, C, Cs, ... Cy
N e e em e e s e P 4 / \~___________.¢!E--.mmmm-ﬂ
Load Random Initial Centroids Train

Load the data from HDFS to DRAM (and DCPMM / SSD if DRAM cannot hold all of the data)(Load), after that, the data will not be changed,
and will be iterated repeatedly in Initialization and Train stages.

K-means Basic Data Flow

K centroids

— Cl’?:?” . T~ Q

Compute
Node

- Load data from HDFS to memory.
- Spill over to local storage

(22X |nitialization

- Compute using initial centroid based on
data in memory or local storage

Compute
Node

Storage

1
1
:
1
=
1
1

Train

- Compute iterations based on local data

1 Modified to support DCPMM

#1 AD #2 DRAM

Hardware DRAM 192GB (12x 16GB DDR4 2666) 768GB (24x 32GB DDR4 2666)

Intel Optane DC Persistent Memory 1TB (8x 128GB QS) N/A

DCPMM Mode AppDirect N/A

CPU Intel(R) Xeon(R) Platinum 8280L CPU @ 2.70GHz

Disk Drive 8x Intel DC S4510 SSD (1.8T) + 2 * P4500 (1.8T)
Software CPU / Memory Allocation Driver (5GB + 10 cores) + 2 * Executor (80GB + 32 Cores)

Software Stack Spark (2.2.2-snapshot: bb3e6ed9216f98f3a3b96c8c52f20042d65e2181) + Hadoop (2.7.5)

R s 156 1001210 64706 4l 7 ey S

Mitigation variants (1,2,3,3a,4, L1TF) 1,2,3,3a,4, L1TF

Cache Spill Disk N/A 8 * SSD

NUMA Bind 2 NUMA Nodes bind 2 Spark Executors respectively

Data Cache Size (OffHeap) DCPMM (no spill) 680GB DRAM (partially spill)
Workload Row size 6.1 Billion Records / data size 1.1TB / cache data 954GB

Record Count / Data Size / Memory Footprint

Cache Spill Size 0 235GB
Kmeans (Iteration times) 10
Kmeans (K value) 5

Execution Time In Sec (Lower Better)
Bl DRAM [DCPMM

2500
2007.438
2000
1534.675

1500

1000

472.764
395.647
500 308:424
.19
0 |
Load (Write to pcPmMm Train (READ fromn DCPMM Total

- DCPMM provides larger “memory” than DRAM and avoid the data spill in this case, hence got up to 4.98X performance in Training(READ),
and 2.85X end to end performance;

- The DCPMM AppDirect mode is about ~19% faster than DRAM in Load(WRITE cache into DCPMM / DRAM);

- Training(READ) execution gap of DRAM case caused by storage media, as well as the data decompression and de-serialization from the
local spill file;

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: See page11.Test by Intel on 14/03/2019.

i@l 32

http://www.intel.com/benchmarks

HostN., -

Disk Bandwidth

DRAM

SSD read bandwidth is 2.86GB/s

[]
Average of %ew... Average of %esyst... , .
e It's I/O bound leading to low CPU
, Cpu Utilization utilization
120 w w
«load training
-"g i l‘ i 1 Values Sum of rkB/s DRAM
'E 20 1 B Average of %system Sum of wkB/s
I
20 M Average of %user
1]
I
] — L B S T o B s O o T s T o
HastN DCPMM
asti... W = = . oy .
Disk Bandwidth e Much high CPU utilization than
Average of %eu... Average of %syst...
4000000 | DRAM only system
Cpu Utilization 3500000
| . .
w» —foad T train s | [l
100 | I n g 2500000 :
."-; 80 Values 2000000 : Sum of rkB/s)C P M M
60
e B Average of %system 1500000 ! M - - Sum of wkB/s
£ 40 I g_
20 B Average of %user 1000000 I O a(] /| W
|
1] 500000
I
0 '} Ll;...l.mu.u.h_uln..

G RERLREOBSESE
-)
JQI:ITI.II].E.*St...'wI quHNNmmqqmmmmm

Summary

« Intel Optane DC Persistent Memory brings high capacity, low latency and high throughput
« Two operation modes for DCPMM:

App-Direct

Memory Mode
« Good for Spark in:

memory bound workload

I/O intensive workload

Q&A

