
ACCELERATE YOUR SPARK WITH
INTEL OPTANE DC PERSISTENT
MEMORY

INTEL SSP

2

Notices and Disclaimers
© 2018 Intel Corporation. Intel, the Intel logo, 3D XPoint, Optane, Xeon, Xeon logos, and Intel Optane logo are trademarks of Intel Corporation in the U.S. and/or other countries.

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

The cost reduction scenarios described are intended to enable you to get a better understanding of how the purchase of a given Intel based product, combined with a number of situation-specific
variables, might affect future costs and savings. Circumstances will vary and there may be unaccounted-for costs related to the use and deployment of a given product. Nothing in this document
should be interpreted as either a promise of or contract for a given level of costs or cost reduction.

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and
may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily representative of other benchmarks and other benchmark results may show
greater or lesser impact from mitigations.

Results have been estimated based on tests conducted on pre-production systems, and provided to you for informational purposes. Any differences in your system hardware, software or
configuration may affect your actual performance. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance results are based on testing as of 03-14-2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to www.intel.com/benchmarks.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice
Revision #20110804.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks

• DCPMM Introduction

• DCPMM on Spark

▪ Spark SQL

▪ Machine Learning - Kmeans

Agenda

Re-architecting the Memory/Storage Hierarchy

5

Intel® Optane™ DC Persistent Memory - Product Overview
(Optane™ based Memory Module for the Data Center)

IMC

Cascade Lake

Server

IMC

• 128, 256, 512GB

DIMM Capacity

• 2666 MT/sec

Speed

• 3TB (not including DRAM)

Capacity per CPU

• DDR4 electrical & physical

• Close to DRAM latency

• Cache line size access

* DIMM population shown as an example only.

Persistent memory Operating Modes
Memory Mode & AppDirect

6

7

INTEL® OPTANE™ DC PERSISTENT MEMORY Support for Breadth of applications

PERSISTENT PERFORMANCE
& MAXIMUM CAPACITY

APPLICATION

VOLATILE MEMORY POOL

O P T A N E P E R S I S T E N T M E M O R Y

D R A M A S C A C H E

AFFORDABLE MEMORY CAPACITY
FOR MANY APPLICATIONS

APPLICATION

OPTANE PERSISTENT
MEMORY

DRAM

8

App Direct Mode Options

Legacy Storage APIs

Block Atomicity

Storage APIs with DAX
(AppDirect)

Persistent Memory

U
S

E
R

 S
P

A
C

E
K

E
R

N
E

L
 S

P
A

C
E

Standard

File API

Generic NVDIMM Driver

Application

File System

Standard

Raw Device

Access

mmap

Load/

Store
Standard

File API

pmem-Aware
File System

MMU

Mappings

“DAX”

BTT
DevDAX

PMDK

mmap

H
A

R
D

W
A

R
E

• No Code Changes Required

• Operates in Blocks like SSD/HDD

• Traditional read/write

• Works with Existing File
Systems

• Atomicity at block level

• Block size configurable

• 4K, 512B*

• NVDIMM Driver required

• Support starting Kernel 4.2

• Configured as Boot Device

• Higher Endurance than Enterprise
SSDs

• High Performance Block Storage

• Low Latency, higher BW, High
IOPs

*Requires Linux

• Code changes may be required*

• Bypasses file system page cache

• Requires DAX enabled file system

• XFS, EXT4, NTFS

• No Kernel Code or interrupts

• No interrupts

• Fastest IO path possible

* Code changes required for load/store direct
access if the application does not already support
this.

Out of memory Large Spill

Some Challenges in Spark: Memory???

Low Bandwidth IO storage (e.g. HDD, S3)

RDD Cache

Spark DCPMM optimization Overview

OAP Cache

DRAM

IO Layer

Compute Layer

Spark

Input Data

Cache Hit Cache Miss

DRAM

Tied Storage

RDD cache DCPMM optimization (Against DRAM):

● Reduce DRAM footprint

● Higher Capacity to cache more data

● Status: To Be Added

OAP DCPMM optimization (Against DRAM)

● High Capacity, Less Cache Miss

● Avoid heavy cost disk read

● Status: To Be Added

9 I/O intensive Workload

(from Decision Support

Queries)

K-means Workload

Use Case 1: Spark SQL
OAP I/O Cache

OAP (Optimized Analytics Package)

Goal

• IO cache is critical for I/O intensive workload especially on low bandwidth environment (e.g. Cloud, On-Prem

HDD based system)

• Make full use of the advantage from DCPMM to speed up Spark SQL

• High capacity and high throughput

• No latency and reduced DRAM footprint

• Better performance per TCO

Feature

• Fine grain cache (e.g. column chunk for Parquet) columnar based cache

• Cache aware scheduler (V2 API via preferred location)

• Self managed DCPMM pool (no extra GC overhead)

• Easy to use (easily turn on/off), transparent to user (no changes for their queries)

12

https://github.com/Intel-bigdata/OAP

https://github.com/Intel-bigdata/OAP

OAP

13

Spark DCPMM Full Software Stack
SQL workload

Spark SQL

VMEMCACHE

PMEM-AWARE

File SYSTEM

Intel® Optane™ DC Persistent Memory Module

Unmodified SQL

Unchanged Spark

Provide scheduler and fine gain cache based on Data Source API

Abstract away hardware details and cache implementation

Expose persistent memory as memory-mapped files (DAX)

Native library

to access DCPMM

Deployment Overview

Server 1

Local Storage (HDD)

Spark Executor

Spark Gateway

(e.g. ThriftServer, Spark shell)SQL

Cached Data Source (v1/v2)

Task scheduled

Intel Optane DC Persistent

Memory

Cache Hit Cache Miss

Server 2

Native library (vmemcache)

Cache Aware Scheduler

Cache Design - Problem statement

Local LRU cache

Support for large capacities available with persistent memory (many terabytes per server)

Lightweight, efficient and embeddable

In-memory

Scalable

Cache Design - Fragmentation

Manual dynamic memory
management a’la
dlmalloc/jemalloc/tcmalloc/palloc
causes fragmentation

Applications with substantial
expected runtime durations need a
way to combat this problem

▪ Compacting GC (Java, .NET)

▪ Defragmentation (Redis, Apache
Ignite)

▪ Slab allocation (memcached)

Especially so if there’s substantial
expected variety in allocated sizes

Cache Design - Extent allocation

If fragmentation is unavoidable,
and defragmentation/compacting
is CPU and memory bandwidth
intensive, let’s embrace it!

Usually only done in relatively
large blocks in file-systems.

But on PMEM, we are no longer
restricted by large transfer units
(sectors, pages etc)

Cache Design - Scalable replacement policy

Performance of libvmemcache
was bottlenecked by naïve
implementation of LRU based
on a doubly-linked list.

With 100st of threads, most of
the time of any request was
spent
waiting on a list lock…

Locking per-node doesn’t solve
the problem…

Cache Design - Buffered LRU

Our solution was quite
simple.

We’ve added a wait-free
ringbuffer which buffers
the list-move operations

This way, the list only
needs to get locked
during eviction or when
the ringbuffer is full.

Cache Design - Lightweight, embeddable, in-

memory caching

https://github.com/pmem/vmemcache

VMEMcache *cache = vmemcache_new("/tmp", VMEMCACHE_MIN_POOL,
VMEMCACHE_MIN_EXTENT, VMEMCACHE_REPLACEMENT_LRU);

const char *key = "foo";
vmemcache_put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];
ssize_t len = vmemcache_get(cache, key, strlen(key),

buf, sizeof(buf), 0, NULL);

vmemcache_delete(cache);

libvmemcache has normal get/put APIs, optional replacement policy, and configurable extent size

Works with terabyte-sized in-memory workloads without a sweat, with very high space utilization.

Also works on regular DRAM.

https://github.com/pmem/vmemcache

21

Cache Design – Status and Fine Grain

Parquet File

Footer

RowGroup #1

Column Chunk #1

Column Chunk #2

Column Chunk #N

RowGroup #2

RowGroup #N

Guava Based

Cache

Vmemcache

Fine Grain Cache

Cache Status & Report

22

Experiments and Configurations
DCPMM DRAM

Hardware DRAM 192GB (12x 16GB DDR4) 768GB (24x 32GB DDR4)

Intel Optane DC Persistent Memory 1TB (QS: 8 x 128GB) N/A

DCPMM Mode App Direct (vmemcache) N/A

SSD N/A N/A

CPU 2 * Cascadelake 8280M (Thread(s) per core: 2, Core(s) per socket: 28, Socket(s): 2 CPU max MHz:

4000.0000 CPU min MHz: 1000.0000 L1d cache: 32K, L1i cache: 32K, L2 cache: 1024K, L3 cache: 39424)

OS 4.20.4-200.fc29.x86_64 (BKC: WW06'19, BIOS: SE5C620.86B.0D.01.0134.100420181737)

Software OAP 1TB DCPMM based OAP cache 610GB DRAM based OAP cache

Hadoop 8 * HDD disk (ST1000NX0313, 1-replica uncompressed & plain encoded data on Hadoop)

Spark 1 * Driver (5GB) + 2 * Executor (62 cores, 74GB), spark.sql.oap.rowgroup.size=1MB

JDK Oracle JDK 1.8.0_161

Workload Data Scale 2TB, 3TB, 4TB

Decision Making Queries 9 I/O intensive queries

Multi-Tenants 9 threads (Fair scheduled)

Test Scenario 1: Both Fit In DRAM And DCPMM - 2TB

*The performance gain can be much lower if IO is improved (e.g. compression &

encoding enabled) or some hacking codes fixed (e.g. NUMA scheduler)

With 2TB Data Scale, both DCPMM and DRAM based OAP cache can hold the full dataset

(613GB). DCPMM is 24.6% (=1- 100.1/132.81) performance lower than DRAM as measured on 9

I/O intensive decision making queries.

On Premise

Performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,

components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: See page20.Test by Intel on 24/02/2019.

http://www.intel.com/benchmarks

Test Scenario 2: Fit In DCPMM Not For DRAM - 3TB

*The performance gain can be much lower if IO is improved (e.g. compression &

encoding enabled) or some hacking codes fixed (e.g. NUMA scheduler)

With 3TB Data Scale, only DCPMM based OAP cache can hold the full dataset (920GB).

DCPMM shows 8X* performance gain over DRAM as measured on 9 I/O intensive decision

making queries.

On Premise

Performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,

components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: See page20.Test by Intel on 24/02/2019.

http://www.intel.com/benchmarks

Performance Analysis - System Metrics

● Input data is all cached in DCPMM while partially for DRAM

● DCPMM reaches up to 18GB/s bandwidth while DRAM case it’s bounded by disk IO which is only about 250MB/s ~

450MB/s
● OAP cache doesn’t apply for shuffle data (intermediate data) that extra IO pressure put onto DRAM case

● In DCPMM case Spark reads from disk about 27.5GB while DRAM one reads about 395.6GB

OAP Cache works avoiding disk read (blue)

and only disk write for shuffle (red)

Disk read (blue) comes from

shuffle data

Disk read (blue) happens from time to time

DCPMM

Test Scenario 3: None Of DRAM &DCPMM Fit - 4TB

*The performance gain can be much lower if IO is improved (e.g. compression &

encoding enabled) or some hacking codes fixed (e.g. NUMA scheduler)

With 4TB Data Scale, none of DCPMM and DRAM based OAP cache can hold the full dataset

(1226.7GB). DCPMM shows 1.66X* (=2252.80/1353.67) performance gain over DRAM as

measured on 9 I/O intensive decision making queries.

On Premise

Performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,

components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: See page20.Test by Intel on 24/02/2019.

http://www.intel.com/benchmarks

Use Case 2: Machine Learning
Spark K-means

DCPMM Storage Level

DRAM

Disk (SSD, HDD)

Object

Byte buffer

Byte buffer

Spark Core (Compute/Storage Memory)

DRAM (on heap)

DRAM (off heap)

Disk

K-means workload GraphX workload

Decompression

Deseriliazation

• Spark Storage Level
• A few storage levels serving for different purposes

including memory and disk

• Off-heap memory is supported to avoid GC
overhead in Java

• Large capacity storage level (disk) is widely used
for iterative computation workload (e.g. K-means,
GraphX workloads) by caching hot data in storage
level

• DCPMM Storage Level
• Extend memory layer

• Using Pmem library to access DCPMM avoiding
the overhead of decompression from disk

• Large capacity and high I/O performance of
DCPMM shows better performance than tied
solution (original DRAM + Disk solution)

29

K-means in Spark

M0 - Mj

Mj+1 - Mk

Mk+1 - Mm

…

Mx+1 - Mn

HDFS

Cache #1

(DRAM + DISK)

Cache #2

(DRAM + DISK)

Cache #3

(DRAM + DISK)

…

Cache #N

(DRAM + DISK)

Spark Executor

Processes

Loading

Normalization

Caching

C1, C2, C3, … CK

For Each Record in

the Cache

For Each Record in

the Cache

For Each Record in

the Cache

For Each Record in

the Cache

For Each Record in

the Cache

Step 1: For each record in the cache, Sum the

vectors with the same closet centroid

Update the new Centroids

Step 2: Sum the vectors according to

the centroids and find out the new

centroids globally

Sync

N iterations

Load TrainRandom Initial Centroids

2 Iterations for all

of the cache data

to get the K

centroids in a

random mode

Load the data from HDFS to DRAM (and DCPMM / SSD if DRAM cannot hold all of the data)(Load), after that, the data will not be changed,

and will be iterated repeatedly in Initialization and Train stages.

Compute

Node

30

K-means Basic Data Flow

• Load data from HDFS to memory.

• Spill over to local storage

Load

• Compute using initial centroid based on
data in memory or local storage

Initialization

• Compute iterations based on local data

Train

CPU

Memory

Storage

Local

Shared

Compute

Node

CPU

Memory

Storage

Local

Shared

Compute

Node

CPU

Memory

Storage

Local

Shared

HDFS

…

…

K centroids

C1, C2, C3, … CK

1
2

3

1

2

3

31

Experiments and Configurations
#1 AD #2 DRAM

Hardware DRAM 192GB (12x 16GB DDR4 2666) 768GB (24× 32GB DDR4 2666)

Intel Optane DC Persistent Memory 1TB (8x 128GB QS) N/A

DCPMM Mode AppDirect N/A

CPU Intel(R) Xeon(R) Platinum 8280L CPU @ 2.70GHz

Disk Drive 8x Intel DC S4510 SSD (1.8T) + 2 * P4500 (1.8T)

Software CPU / Memory Allocation Driver (5GB + 10 cores) + 2 * Executor (80GB + 32 Cores)

Software Stack Spark (2.2.2-snapshot: bb3e6ed9216f98f3a3b96c8c52f20042d65e2181) + Hadoop (2.7.5)

OS & Kernel & BIOS
Linux-4.18.8-100.fc27.x86_64-x86_64-with-fedora-27-Twenty_Seven

BIOS: SE5C620.86B.0D.01.0299.122420180146

Mitigation variants (1,2,3,3a,4, L1TF) 1,2,3,3a,4, L1TF

Cache Spill Disk N/A 8 * SSD

NUMA Bind 2 NUMA Nodes bind 2 Spark Executors respectively

Data Cache Size (OffHeap) DCPMM (no spill) 680GB DRAM (partially spill)

Workload
Record Count / Data Size / Memory Footprint

Row size 6.1 Billion Records / data size 1.1TB / cache data 954GB

Cache Spill Size 0 235GB

Kmeans (Iteration times) 10

Kmeans (K value) 5

1 Modified to support DCPMM

32

Performance Comparison(DCPMM AD V.S. DRAM)

• DCPMM provides larger “memory” than DRAM and avoid the data spill in this case, hence got up to 4.98X performance in Training(READ),

and 2.85X end to end performance;

• The DCPMM AppDirect mode is about ~19% faster than DRAM in Load(WRITE cache into DCPMM / DRAM);

• Training(READ) execution gap of DRAM case caused by storage media, as well as the data decompression and de-serialization from the

local spill file;

4.98X1.19X
2.85X

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,

components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configurations: See page11.Test by Intel on 14/03/2019.

DCPMM DCPMM

http://www.intel.com/benchmarks

DRAM

System Analysis

DCPMM

load training

trainingload

DRAM

● SSD read bandwidth is 2.86GB/s

● It’s I/O bound leading to low CPU

utilization

load training

load training

DCPMM

● Much high CPU utilization than

DRAM only system

• Intel Optane DC Persistent Memory brings high capacity, low latency and high throughput

• Two operation modes for DCPMM:

• App-Direct

• Memory Mode

• Good for Spark in:

• memory bound workload

• I/O intensive workload

Summary

Q&A

