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ABSTRACT

Byte-addressable non-volatile memory (NVM) features high density,

DRAMcomparable performance, and persistence. These characteris-

tics position NVM as a promising new tier in the memory hierarchy.

Nevertheless, NVM has asymmetric read and write performance,

and considerably higher write energy than DRAM. Our work pro-

vides an in-depth evaluation of the first commercially available

byte-addressable NVM – the Intel Optane R© DCTM persistent mem-

ory. The first part of our study quantifies the latency, bandwidth,

power efficiency, and energy consumption under eight memory

configurations. We also evaluate the real impact on in-memory

graph processing workloads. Our results show that augmenting

NVM with DRAM is essential, and the combination can effectively

bridge the performance gap and provide reasonable performance

with higher capacity. We also identify NUMA-related performance

characteristics for accesses to memory on a remote socket. In the

second part, we employ two fine-grained allocation policies to con-

trol traffic distribution between DRAM and NVM. Our results show

that bandwidth spilling between DRAM and NVM could provide

2.0x bandwidth and enable 20% larger problems than using DRAM

as a cache. Also, write isolation between DRAM and NVM could

save up to 3.9x energy and improves bandwidth by 3.1x compared

to DRAM-cached NVM. We establish a roofline model to explore

power and energy efficiency at various distributions of read-only

traffic. Our results show that NVM requires 1.8x lower power than

DRAM for data-intensive workloads. Overall, applications can sig-

nificantly optimize performance and power efficiency by adapting

traffic distribution to NVM and DRAM through memory configu-

rations and fine-grained policies to fully exploit the new memory

device.
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1 INTRODUCTION

A diversity of applications on HPC and cloud computing systems

demand ever-increasing memory capacity to enable expanding

workloads. In recent years, HPC applications have been observed

to converge towards “Big Data” because of the enormous amount

of data sets [27]. Neural networks in machine learning applications

can improve accuracy by using wide and deep networks [29, 31],

but network complexity may be restricted by the memory capacity

of a single machine. Large-scale graphs often have to be distributed

over multiple compute nodes to enable in-memory processing [19].

Simply scaling up the memory capacity using the DRAM technol-

ogy can be prohibitively expensive in both power and cost. As a

volatile memory technology, DRAM requires power to refresh data

periodically, and the refresh power scales proportionally with the

memory capacity. In fact, the power constraint has been identified

as one of the main challenges in Exascale computing [2]. Moreover,

DRAM faces challenges in further scaling down the size of capac-

itors and transistors, and the low density makes it infeasible for

implementing large-capacity systems within area constraints [17].

Non-volatile memory (NVM) technologies are considered as a

promising alternative to DRAM for its high density, low standby

power, and low cost per bit. Nevertheless, their access latency

could be as high as 3 − 20 times that of DRAM. Additionally,

their low bandwidth, asymmetric read and write performance, and

high write energy hinder their suitability as the primary system

main memory. Recently, a byte-addressable NVM using the Intel

Optane R© DCTM technology (shortened to Intel Optane DC PMM)

has become commercially available, enabling up to 6 TB capacity

on a single machine [13]. While previous works have studied NVM

technologies using simulations and emulations [5, 14, 17, 25, 26], a

realistic evaluation on the hardware enables accurate assessment of

its impact on applications and future system designs. In this work,

we perform extensive experiments and modeling to identify the

main consideration for adapting applications for utilizing the new

memory device efficiently.

Our study consists of two main parts. First, we quantify the

performance, power, and energy consumption under eight memory

configurations that require no application modifications. We choose

five graph applications from GAP [1] and Ligra [28] framework to

evaluate the efficiency of memory configurations. Our results show

that using DRAM as a cache to NVM can effectively bridge the
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Figure 1: A conceptual diagram of one socket on the Purley

Platform. Each socket consists of two memory controllers

and six channels attached to DRAM DIMMs and NVDIMMs.

Data in the write pending queue (WPQ) in iMC will be

flushed to NVDIMMs even during power failure. NVDIMM

includes small DRAM caches (green boxes) for caching data.

performance gap and brings performance close to DRAM. We also

show that using local NVM on a single socket may be more efficient

than using DRAM on two sockets for some workloads. However,

directly replacing DRAM with NVM for graph applications could

decrease performance by an order larger than the gap between

DRAM and NVM in bandwidth and latency.

The second part of our study employs a set of allocation policies

to enable fine-grained traffic distribution between DRAM and NVM.

In particular, we highlight the importance of bandwidth spilling be-

tween DRAM and NVM.We also quantify the performance improve-

ment and energy saving by isolating write-intensive data structures

to DRAM compared to DRAM-cached NVM. Finally, we establish

the roofline model of the theoretical peak performance [4, 33] to

explore power efficiency at different traffic distribution. Our results

show that the Intel Optane DC PMM can improve power and energy

efficiency when traffic distribution is adapted to various arithmetic

intensities. Our main contributions are as follows:

• Quantify the latency, bandwidth, power, and energy con-

sumption of eight memory configurations for diverse access

patterns

• Identify the impact on bandwidth and power efficiency from

non-temporal writes in DRAM-cached NVM

• Evaluate the efficiency of using DRAM as a cache to NVM

for large-scale graph workloads

• Identify the advantage of using the Optane PMM on the local

socket to avoid performance loss from accessing DRAM on

a remote socket

• Propose a DRAM-NVM bandwidth spilling allocation policy

to achieve 2.0x bandwidth and enable larger problems than

DRAM-cached NVM.

• Quantify that a write-isolation policy between DRAM and

NVM can save up to 3.9x energy and improves bandwidth

by 3.1x compared to DRAM-cached NVM.

• Establish the roofline model of theoretical peak performance

at various distributions of read-only traffic between DRAM

and NVM and show that a balanced distribution could im-

prove performance and power efficiency.

App Direct Memory Mode 

Figure 2: The logical view of configuring all NVDIMMs ei-

ther in App Direct mode or Memory mode.

2 ARCHITECTURE

Our evaluation of the Intel Optane byte-addressable NVM uses

the Purley platform. The platform consists of two sockets that

feature two 2nd Gen Intel R© Xeon R© Scalable processors and Intel

Optane DC PMM1. Figure 1 presents an overview of the socket

architecture. Each socket has two integrated memory controllers

(iMC) that control six memory channels, which are attached to

DRAM DIMMs and NVDIMMs. An NVDIMM can have a capacity

of 128, 256 or 512 GB. Currently, 128-GB NVDIMM has the lowest

cost per byte [7].

NVDIMMs use a non-standard DDR-T protocol to enable out-of-

order commands and data transfer to address the long latency to

Optane media [7]. In contrast, DRAM DIMMs employ the standard

DDR4 protocol. The inset on Figure 1 illustrates the different data

granularity between CPU and NVDIMM (64 bytes) and the Optane

media (256 bytes). A small DRAM buffer is used to cache data

from the media so that consecutive requests to the same 256 byte

could have reduced latency. There is a small processor (Apache Pass

controller) in NVDIMM to translate physical addresses into internal

Optane device addresses [13] and caches the address indirection

table (AIT) in a DRAM cache for performance.

A common configuration of the memory system attaches a

DRAM DIMM and an NVDIMM to one memory channel. Hav-

ing an iMC connected to both DRAM DIMMs and NVDIMMs is

essential for enabling DRAM caching to NVM because DRAM can

only cache accesses to NVDIMMs that share the same iMC [13].

Under this channel-sharing configuration, the aggregate bandwidth

from DRAM and NVM becomes unachievable. In comparison, the

Intel Knights Landing processor has separate memory channels for

DRAM and MCDRAM, and peak bandwidth could be an aggregate

of both memories.

Memory Options Intel Optane DC PMM can be either con-

figured in App Direct or Memory mode. Through the ipmctl util-

ity [10], users can select the configuration for each NVDIMM so

that the platform could be configured either in one mode or a hy-

brid mode. Figure 2 presents the logical view when all NVDIMMs

are configured in the same mode. In App Direct mode, DRAM on

the two sockets are exposed as a shared memory with two non-

uniform memory access (NUMA) nodes. Separate namespaces [11]

are created for PMM on the two sockets using ndctl utility [12].2 In

Memory mode, the Optane memory modules on the two sockets

1We use PMM and NVM interchangeably for the rest of the paper.
2Ndctl fails to create one namespace for all NVDIMMs on two sockets likely because
their memory addresses are non-contiguous.
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are visible as two NUMA nodes to CPUs while DRAM becomes a

transparently managed cache.

In App Direct mode, a dax-aware file systemwould transparently

convert file read and write operations into 64-byte load and store

instructions. Although the interaction between the host processor

and NVDIMM is now at a much finer granularity than in block

devices, each request still fetches 256 bytes from the media. Thus,

data locality that utilizes all the fetched bytes would bring optimal

performance. Similarly, writes to PMM are performed in 256 bytes.

Modifying fewer than 256 bytes still incurs the overhead and energy

as of 256 bytes, i.e., write amplification.

Large PMM capacity also results in large metadata for the page

table. Per-page metadata occupies 64 bytes when creating names-

paces for PMM. Even using the smallest 128-GB NVDIMMs on the

platform would result in 24 GB metadata. Users can choose to store

this metadata in DRAM or PMM. However, we find that storing

metadata in PMM could severely impact performance.

In Memory mode, DRAM becomes a direct-mapped write-back

cache to PMM and can only cache accesses to NVDIMMs attached

to the same iMC [13]. One impact of this cache mechanism is that

DRAM on one socket cannot cache accesses to PMM on the other

socket, which contributes to NUMA effects in Memory mode [6].

This design is likely a trade-off between flexibility and performance

to avoid routing requests among iMCs. As awrite-back cache, writes

are automatically buffered in DRAM, which is critical for avoiding

performance degradation due to low write bandwidth to PMM. The

platform provides two options in the optimization mode, i.e., for

latency or for bandwidth, as a BIOS setting. We find that the option

shows impact in Memory mode for large data size.

Memory Power DRAM and NVM are tightly coupled on the

system for performance and could impact the power consump-

tion of the system. Each NVDIMM includes small DRAM caches,

and a controller for address translation and write-leveling man-

agement [13]. These components consume additional active and

static power, even though the non-volatile media does not require

standby power to refresh data. At the system level, the metadata of

namespaces needs to be stored in DRAM instead of PMM to avoid

significant slowdown. Also, Memory mode relies on DRAM DIMMs

to cache accesses to PMM. Therefore, (at least some) DRAMDIMMs

need to be power-on for acceptable performance of PMM. In this

study, we evaluate the power and energy consumption of Optane

PMM for realistic workloads under different memory configura-

tions.

Application Porting Utilizing PMM in App Direct mode re-

quires porting efforts to select data structures in applications and

change their allocation sites. A variant of the App Direct mode is

to expose PMM to the kernel as separate NUMA nodes. In this con-

figuration, standard NUMA control techniques like numactl utility

can enable applications utilizing PMM without any modifications.

Also, using DRAM as a cache in Memory mode requires no applica-

tion changes. We believe these memory configurations that require

minimal porting efforts are likely to be the initial deployment and

thus, we perform an in-depth evaluation of these configurations

to provide insights for selecting the optimal configuration for a

workload, and also for avoiding combinations of access patterns and

configurations that could cause severe performance bottlenecks.

Table 1: Experiment Platform Specifications

Model Intel R© Xeon R© Platinum 8260L

Processor 2nd Gen Intel R© Xeon R© Scalable processor

Cores 24 Cores (48 hardware threads) × 2 sockets

Speed 2.4 GHz, 3.9 GHz Turbo frequency

L1 Cache 32 KB d-cache and 32 KB i-cache (private)

L2 Cache 1 MB (private)

L3 Cache 35.75 MB (shared)

TDP 165 W

Memory Controller 2 iMCs × 3 channels × 2 sockets

DRAM 16-GB DDR4 DIMM per channel

NVM 128-GB Optane DC NVDIMM per channel

UPI Links three links at 10.4 GT/s, 10.4GT/s, and 9.6 GT/s

Table 2: Memory Configurations

Configuration Optane Mode Mapping/Namespace Socket Data Binding

DRAM-local App Direct memmap local DRAM

DRAM-remote App Direct memmap remote DRAM

PMM-numa-local App Direct memmap local PMM

PMM-numa-remote App Direct memmap remote PMM

PMM-fsdax-local App Direct fsdax local PMM

PMM-fsdax-remote App Direct fsdax remote PMM

MemoryMode-local Memory Mode — local —

MemoryMode-remote Memory Mode — remote —

DRAM App Direct memmap two sockets DRAM

PMM App Direct memmap two sockets PMM

DRAM-PMM-interleave App Direct memmap two sockets interleave all

MemoryMode Memory Mode — two sockets —

3 METHODOLOGY

In this section, we describe the experimental setup, benchmarks,

applications, and methodologies. Table 1 specifies the configuration

of our testbed.We always configure 12 NVDIMMs in the samemode.

The speed of the data bus is 2400 GT/s, supporting a peak bandwidth

of 19.2 GB/s per channel or 230.4 per platform.3 Overall, the system

has 192 GB DRAM and 1.5 TB NVM. We store the page metadata

for the Optane PMM namespaces in DRAM, leaving 168 GB DRAM

available to applications. We use a set of memory configurations as

specified in Table 2 for evaluation.

The platform runs operating system Fedora 29 with GNU/Linux

5.1.0. We compile all applications using GCC 8.3.1 compiler with

support for OpenMP. We use the Intel Memory Latency Checker

(MLC) [9] to quantify the latency and bandwidth for benchmarking.

In addition, we use the STREAM [20] benchmark and extended it to

include an accumulation kernel, for quantifyingmemory bandwidth.

The accumulation kernel is a read-only workload that sums up all

elements in an array. We develop a set of benchmarks to establish

roofline, power-line, and arch-line models [4, 33] for performance

and energy efficiency at different traffic distribution betweenDRAM

and NVM. We use the Intel Processor Counter Monitor (PCM) [32]

to collect power and energy consumption of memory and CPU on

each socket.

Our experiments use GAP [1] and Ligra [28] graph processing

frameworks for evaluating the real impact of PMM on applications.

We select breadth-first search (BFS), betweenness centrality (BC),

3Note that higher speed could not be enabled on the platform even though DDR4
supports 2666 GT/s.
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(b) Random Accesses

Figure 3: Latency of sequential and random read accesses to a data buffer with increasing size. DRAM capacity on a single

socket is 96 GB and the total DRAM capacity of the system is 192 GB.

triangle counting (TC), connected component (CC), and PageRank

(PR) applications from each framework. The experiments use graphs

generated by the included Kronecker [18] generator in GAP and

the rMat [3] generator in Ligra. The largest input in Ligra (s30) has

1073M vertices and 17179M edges and requires about 625 GB mem-

ory. The largest input in GAP has 2147M vertices and 34359M edges.

It requires about 1049 GB memory for TC and 540 GB memory for

the other applications. If not specified, we run all applications using

96 threads on two sockets. For single-socket execution, we use 48

threads and memory on one socket, i.e., 96 GB DRAM and 768 GB

NVM, to eliminate the influence from NUMA effects.

4 MEMORY CONFIGURATIONS

In this section, we focus on memory configurations that require no

application modifications. We first benchmark the latency, band-

width, and power efficiency of all configurations, and then quantify

the impact on five graph applications.

4.1 Latency

We quantify the read latency in eight memory configurations and

present the results in Figure 3. DRAM-local and PMM-numa-local

configurations are two “bare-metal” configurations that are not

subject to cache overhead in Memory mode or file system overhead

in PMM-fsdax. Based on them, we quantify the sequential read

accesses to DRAM has a latency of 79 ns and 174 ns to PMM. For

random accesses, the latency to PMM increases to 302 ns while to

DRAM it slightly increases to 87ns. PMM is more sensitive to data

locality because the internal data granularity is at 256 bytes, and

data is buffered in NVDIMM (Section 2).

MemoryMode-local has latency close to DRAM-local when the

data size fits in one socket (96 GB) for both sequential and ran-

dom accesses. Interestingly, for both access patterns, once the data

size exceeds a single socket, the latency approaches that of PMM-

numa-remote configuration. In Figure 3b, lines for DRAM-local

and MemoryMode-local are nearly overlapping for data size up

to 64 GB, indicating that managing DRAM as a cache incurs little

overhead. MemoryMode-remote has increasing latency for sequen-

tial accesses even at small data size, likely because the local DRAM

cannot cache accesses to PMM on another socket.

The dax-aware file system imposes very minimal overhead com-

pared to accessing PMM as a NUMA node. PMM-numa-local and

PMM-fsdax-local configurations have nearly identical latency at

all data sizes in Figure 3a and 3b. Note that dax-aware file system

implicitly converts file reads and writes into load and store instruc-

tions and bypasses the page cache in the kernel. Also, PMM-fsdax

configurations can provide data persistence in case of DRAMpower-

off because data that has reached iMC will be flushed into PMM

within DRAM retention time. Overall, the Intel Optane provides

persistence at fine grain and low overhead.

NUMA effects across the two sockets have a severe impact on

all memory configurations. We divide the eight configurations into

four groups of local and remote configurations and present them in

the same color in Figure 3. For both access patterns, NUMA effects

increase latency by 1.2 to 1.8 times. We notice that the increased

latency remains nearly constant for each group, in the range of 66-

85 ns. Surprisingly, for sequential accesses, when the data size is as

small as 16 GB, latency in Memory-remote configuration is already

higher than in PMM-local configuration. Also, starting from 160 GB,

MemoryMode-local has higher latency than PMM-numa-local. The

high latency in MemoryMode indicates that accessing local PMM

could be an alternative. When data placement control is feasible,

explicitly managing data in App Direct mode to utilize local PMM

may have lower latency than Memory mode.

Insight I: Coordinating 256B accesses to PMM to exploit locality

(i.e. using the PMM internal granularity) may reduce latency and

write-amplification.

Insight II: Explicit data placement that utilizes local PMM could

mitigate high cost of accessing DRAM on the remote socket.
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Figure 4: Memory bandwidth of mixed read and write sequential accesses on a single socket. One thread per core is used.

4.2 Bandwidth

We quantify the peak bandwidth of six access patterns on a single

socket by scaling the number of threads. Note that increasing the

number of threads beyond 24 (one thread per core) brings minimal

changes to the bandwidth, and thus is not presented. We derive the

bandwidth to PMM and DRAM from PMM-numa-local and DRAM-

local configurations, respectively. For sequential read accesses in

Figure 4a, DRAM has a peak bandwidth of 104 GB/s while PMM

reaches 39 GB/s. Also, PMM has a 3.3 times asymmetry in read

and write bandwidth, given its write bandwidth at 12.1 GB/s. The

dax-aware file system shows low overhead so that PMM-fsdax and

PMM-numa configurations are always overlapping in Figure 4.

Using local PMM achieves higher bandwidth than the remote

DRAM for read-only traffic. PMM-numa-local and PMM-fsdax-local

(overlapping black and blue lines in Figure 4a) start outperforming

DRAM-remote and MemoryMode-remote (overlapping green and

red lines in Figure 4a) whenmore than 14 threads are used. However,

the performance of PMM degrades once write accesses are mixed

in. In Figure 4d to 4f, the gap between DRAM and PMM increases

to 4.1–12.5 times, in contrast to the 2.6 times gap in read-only

accesses in Figure 4a. In these patterns, the local DRAM could

still sustain 84.9–98.7 GB/s bandwidth while the bandwidth of

PMM-numa-local and PMM-fsdax-local dramatically decreases to

7.6–21.6 GB/s. Interestingly, the lowest bandwidth is obtained with

mixed read and write accesses rather than write-only accesses. In

Figure 4d, 4e, and 4f, the bandwidth of PMM local configurations

steadily increases when the ratio of read accesses increases.

Non-temporal stores [15] (NT-write) could significantly dimin-

ish the performance of Memory mode at a large number of threads.

In Figure 4b and 4c, the bandwidth of MemoryMode-local is only

47% and 64% that of DRAM-local at 24 threads. Without NT-write,

Memory mode could sustain 80 to 88% DRAM bandwidth in Fig-

ure 4a, 4d, 4e and 4f. Typically, non-temporal stores are used in

applications to avoid caching data that will not be reused shortly to

improve cache utilization. However, for Intel Optane PMM, caching

writes in DRAM becomes more critical for performance. Interest-

ingly, for a small number of threads, i.e., 8 and 9 threads in Figure 4b

and 4c, MemoryMode-local with NT-write accesses outperforms

DRAM-local configuration.

NUMA access further exacerbates the bandwidth to PMM, caus-

ing severe performance degradation in PMM-numa-remote and

PMM-fsdax-remote configurations. In Figure 4d to 4f, when more

than three threads are used, the bandwidth to the remote PMM

starts decreasing, eventually reaching below 1GB/s. Although the

links between the two sockets have a high aggregated bandwidth,

the measured bandwidth is far below the peak, implying significant

contention on the links. Mitigating such performance loss becomes

a priority. Intelligent co-location of data and computation on the

same socket and utilizing local PMM is more effective than reach-

ing over the link. Moreover, throttling concurrent remote accesses

could also mitigate performance degradation.

MemoryMode-local configuration exhibits reduced bandwidth

and increased variation in performance as the number of

threads increases. In Figure 4, the gap between DRAM-local and

MemoryMode-local continues increasing when more than 10

threads are used. Note that the total data size in these tests is

smaller than the DRAM capacity on a single socket. Therefore,

the increased bandwidth loss is likely due to the increased cache

conflicts in DRAM. Since DRAM is configured as a direct-mapped
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cache, when multiple threads concurrently access DRAM, the prob-

ability that multiple threads fetch different data that is mapped into

the same cache set also increases. Consequently, for such problem

sizes, DRAM-local would be more suitable than MemoryMode-local

configuration.

MemoryMode-local configuration is also highly sensitive to the

optimization mode for bandwidth or latency (Section 2). Figure 5

presents the sequential read bandwidth in MemoryMode-local con-

figuration as the data size increases. The gap between the two op-

tions starts appearing when the data size exceeds the total DRAM

capacity (192GB). Eventually, at large data size, the option for band-

width saturates at 40 GB/s while the option for latency sustains at

only 5 GB/s.

Insight III: Local PMM could have higher bandwidth than remote

DRAM for read-intensive workloads at high thread counts.

Insight IV: Throttling concurrent updates to PMM and isolating

write-intensive data structures from PMM could optimize perfor-

mance.

4.3 Power and Energy

In this section, we quantify the dynamic power and power efficiency

of PMM under six access patterns. We use PCM to measure the

total memory power and energy consumption for each socket. One

challenge is to isolate static power from the measured total power.

Since each memory channel is attached with one DRAM DIMM

and one NVDIMM, the measured power always includes DRAM

static power because DRAM needs to refresh data periodically

even without any data accesses. Our solution is to bind application
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bandwidth per dynamic memory power.
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Figure 8: Total memory energy with breakdown into static

(the bottom partition) and dynamic energy (the top parti-

tion). Note that the static energy consists of DRAM static

energy because DRAM DIMMs cannot be switched off.

execution to one socket and measure the memory power of the busy

socket and idle socket, respectively. We find that the idle socket

consumes nearly constant memory power of 38 Watt. Note that

without running any applications, a socket consumes about 18-

20 Watt memory power. The additional 18-20 Watt is likely due to

activities for supporting cache lookup and coherence. Therefore, we

find the idle socket power 38Watt as a more reasonable reference to

the static power at run time. Next, we subtract this static memory

power from the total memory power of the busy socket to quantify

dynamic memory power.

PMM significantly reduces the dynamic memory power com-

pared to DRAM in all tested access patterns. Figure 6 presents the

dynamic memory power on one socket. The PMM-numa-local and

PMM-fsdax-local configurations consume similar power across all

workloads. In general, the power consumed by the PMM config-

urations closely follows the changes in bandwidth. For instance,

from 1 read : 1 write to 3 read : 1 write, the bandwidth in PMM

configurations steadily increases in Figure 4, and so does the power

in Figure 6, which increases from 2 to 8 Watt. In contrast, DRAM-

local and MemoryMode-local configurations exhibit little change

in dynamic memory power across the access patterns, stabilizing at

about 60 Watt. Overall, PMM configurations reduce dynamic power

by 4–29 times compared to DRAM configurations.

PMM also achieves higher or comparable power efficiency com-

pared to DRAM in all tested workloads, except the write-only work-

load. We define the power efficiency as the peak bandwidth at

24 threads per socket (one thread per core) per dynamic memory
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Figure 9: Normalized execution time of five graph applications (x-axis) in Ligra and GAP frameworks using four memory

configurations. Time is normalized to the DRAM configuration (the red dotted line).

power and report in Figure 7. For the read-only workload in Figure 7,

PMM-numa-local and PMM-fsdax-local configurations achieve up

to 47% higher power efficiency than DRAM-local. As expected, due

to the high write energy to PMM, the power efficiency of PMM

configurations is 20% lower than DRAM-local configuration for the

write-only workload. This observation restates the importance of

isolating writes from PMM and also shows the potential of using

PMM for meeting a low power envelope on large-scale systems.

Non-temporal writes again significantly impact Memory mode.

Without NT-write, the MemoryMode-local configuration consumes

similar dynamic power as the DRAM-local configuration. However,

with NT-write accesses, MemoryMode-local consumes 13% addi-

tional dynamic power. This impact is even more profound in power

efficiency. The MemoryMode-local configuration shows 49% lower

power efficiency than the DRAM-local configuration for NT-write

accesses while it can reach similar efficiency for all other access

patterns. In fact, the power efficiency in the MemoryMode-local

configuration with NT-write accesses is even lower than directly

writing to PMM. Consequently, the MemoryMode-local configu-

ration consumes more memory energy than the DRAM-local con-

figuration, as reported in Figure 8. This finding is consistent with

the conclusion in the bandwidth evaluation to avoid non-temporal

writes when DRAM is configured as a cache to PMM.

PMM configurations can reduce the dynamic memory energy

for certain workloads. However, the high static power, which is

partially because DRAM DIMMs cannot be powered off, results

in high total energy costs. For bandwidth-bound workloads, the

PMM configurations require longer execution time than the DRAM

configurations. Despite the low dynamic power, the static power

persists, and the static energy becomes dominant. Figure 8 presents

the breakdown of total memory energy. The 1 read : 1 write work-

load spends 95% Joule for static energy. For most access patterns,

the dynamic memory energy (the top partition) only takes up a

small portion of the total energy cost. Although the current tight

coupling between DRAM and PMM is likely a design choice for per-

formance and convenience consideration, it may prohibit exploiting

the full potential of power efficiency of PMM.

Insight V: Energy-aware data placement would need to consider

the high static power and the throttling effects from writes to PMM.

Insight VI: Non-temporal write in MemoryMode may result in

bandwidth loss and high energy cost.

4.4 Graph Applications

We further quantify the benefits of memory configurations on appli-

cations that require large memory capacity. We choose five popular

graph applications from two well-known graph processing frame-

works, i.e., Ligra [28] and GAP [1]. Each application uses several

input problems whose memory footprint eventually scale beyond

the DRAM capacity.

The algorithmic properties of these graph applications result

in similar sensitivity to different memory configurations, even

when different frameworks and implementations are used. Fig-

ure 9 presents the graph applications in the two frameworks using

two input problems that have memory footprint smaller than the

DRAM capacity. Thus, we can use the performance on DRAM con-

figuration as the reference (the red dashed line) for normalizing the

performance on the other three memory configurations. In this set

of experiments, MemoryMode configuration shows similar perfor-

mance as DRAM with little fluctuation for some kernels, indicating

its effectiveness for graph applications with memory footprint fit

in DRAM. PMM without DRAM caching, however, results in 2–

18x slowdown depending on the application. The slowdown of

an application is again consistent across the two frameworks. For

instance, on both frameworks, triangle counting (TC) exhibit the

lowest slowdown among all applications, i.e. up to 5x on Ligra and

2.5x on GAP framework. One reason for the low sensitivity is the

relative high computation intensity in TC compared to other appli-

cations. In contrast, BFS exhibits high sensitivity when changing

from DRAM to PMM in both frameworks, i.e. reaching up to 15x

on Ligra and 18x on GAP framework. Finally, the DRAM-PMM in-

terleave configuration highlights the importance of DRAM caching

as its improvement compared to PMM configuration, about 2x

speedup, is less impressive than Memory mode.

Large problems that exceed the DRAM capacity could still benefit

fromMemoryMode, but the improvement compared to PMM config-

urations diminishes as the problem size increases. Figure 10 presents

the execution time of five graph applications in GAP framework

using input problems that scale at a doubling rate from 35 to 270 GB.
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Figure 10: Execution time of five graph applications with increasing problem size (x-axis) in the GAP graph framework using

four memory configurations. TC memory footprint exceeds DRAM capacity at s30.
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Figure 11: Performance gap between MemoryMode and two PMM configurations decreases at increased input problems.
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Figure 12: Normalized execution time using single socket

w.r.t the execution time using two sockets.

In BFS, CC and PR, the gap between DRAM and MemoryMode con-

figurations continues increasing and shows a nonlinear increase

at input s30, whose memory footprint exceeds DRAM capacity. As

the problem size increases, the effectiveness of using DRAM as

a cache to PMM continues decreasing as illustrated in Figure 11,

where the execution time of PMM and DRAM-PMM-interleave con-

figurations are normalized to that of MemoryMode configuration.

At the largest problem, the performance gap decreased to 2x–6x

while small inputs could have performance gap up to 18x. Note that

DRAM-PMM-interleave configuration augments the total memory

capacity by 192 GB compared to the MemoryMode configuration,

which is substantial for the total memory capacity of a system.

Thus, trading off a slight slowdown for enabling a large problem in

DRAM-PMM-interleave configuration could be an feasible option

for certain applications.

NUMA effects are profound for graph applications without spe-

cific optimization to reduce remote-socket access. Section 4.1 and 4.2

have revealed the severe bottleneck in latency and bandwidth when

accessing data on the remote socket. To quantify its realistic impact

on applications, we compare single-socket and dual-socket exe-

cutions of five applications in two frameworks. For single-socket

execution, we use only cores and memories on one socket. The

obtained execution time is then normalized to the execution using

all cores and memories on both sockets. Figure 12 presents the rela-

tive performance of two execution modes, where results below the

reference (the red dotted line) indicate that single-socket execution

has shorter execution time than using two sockets.

Using cores and memories on two sockets does not always im-

prove the performance. In both frameworks, less than 20% speedup

is observed in dual-socket execution for small input problems com-

pared to single-socket execution. Surprisingly, using two sockets

could even slow down the execution of some applications, e.g., BFS
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and CC in the GAP framework. The slowdown by two sockets in

these applications even increases when the problem size increases.

In both frameworks, applications with low compute intensity like

BFS, are more sensitive to the high overhead of remote-socket ac-

cesses. In contrast, applications that are more compute intensive

like TC, can still benefit from the increased throughput on two

sockets despite the NUMA penalties.

Avoiding the severe performance loss due to the write throttling

effects to PMM, and the high overhead of accessing remote socket

becomes the priority in optimizing graph frameworks on similar

DRAM-NVM memory systems. For instance, the Ligra framework

performs an in-place sort on edges before computation. Graph edges

are typically large data structures stored on PMM. Thus, the write-

intensive sorting procedure is likely to be a bottleneck. Possible

optimization could batch the sorting procedure in DRAM before

placing data onto PMM to avoid frequent writes to PMM. Graph

partition that maximizes local socket access and reduces remote

accesses would also be feasible optimization technique [22].

Insight VII: Graph partitioning among multiple sockets and write

isolation from PMM would be critical and practical for performance.

5 FINE-GRAINED MEMORY POLICIES

In this section, we employ two fine-grained memory allocation

policies to improve the control of traffic distribution between NVM

and DRAM. These policies require modifying applications. In re-

turn, they may bring more performance improvement than coarse-

grained memory allocation. These policies could also workaround

some performance bottlenecks in the memory configurations. We

describe the allocation policies as follows.

Bandwidth spilling is a DRAM-NVM-spilling Block Allocation

that returns a contiguous virtual memory space, which physically

spills over two sockets and two memories (in numa configurations

in Table 2). An allocation is divided into blocks, which are placed

to sockets in a round-robin fashion. Each block spills from DRAM

to NVM if the DRAM resource is exhausted. Thus, this allocation

combines typical block allocation on NUMA machines to address

the inter-socket bottleneck and also distributes traffic between

DRAM and NVM to exploit the bandwidth.

Write isolation is an NVM-aware-splitting Block Allocation that

returns a contiguous virtual memory space, which physically splits

into multiple persistent structures over the two sockets (in PMM-

fsdax configurations in Table 2). Blocks of one data structure are

saved into multiple files and then spread over the Optane DC PMM

on two sockets. Combined with thread affinity, this policy could mit-

igate inter-socket accesses and utilizes the aggregated throughput

on two sockets.

5.1 Bandwidth Spilling

We have shown in Figure 4.1 and 5 that using DRAM as a cache

to NVM could have high latency and low bandwidth when the

data size approaches or exceeds DRAM capacity. To overcome the

cache overhead and inter-socket delay, we explore fine-grained

data placement control in App Direct mode. We derive a simple

analytical model in Eq. 1 to guide the achievable bandwidth. In this

model,M0 represents the portion of the memory traffic to DRAM,

and BW0 and BW1 represent the peak bandwidth to DRAM and
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Figure 13: Compare the bandwidth inAppDirectmodeusing

the bandwidth spilling policy with the optimization modes

inMemorymode.Memorymode supports up to 1.28 TB data

while the spilling policy reaches 1.5 TB.

PMM, respectively. Based on the model, we develop the bandwidth

spilling block allocation routine.

BWtot =
1

M0
BW0
+

1−M0
BW1

(1)

Eq. 1 models the overall bandwidth as a nonlinear inverse variation

function of the traffic distribution to PMM. Now assuming the

total traffic is proportional to the data size and substitute BW0 and

BW1 with the measured peak bandwidth of PMM and DRAM on

two sockets, i.e., 78 GB/s and 204 GB/s respectively, we plot the

theoretical bandwidth in the black dashed line in Figure 13. Note

that we only consider read traffic for bandwidth-spilling because

write accesses to PMM dramatically lower performance and should

be isolated in DRAM as discussed in the next section.

We evaluate the performance of the proposed policy using the

accumulate benchmark and increase the data size to stretch the

memory system. For small data size, Memory mode and our pol-

icy achieve similar bandwidth at about 200 GB/s. At about 32 GB,

the two optimization options in Memory mode exhibit a reverse.

The optimization mode for bandwidth starts outperforming the

optimization mode for latency. For data larger than 256 GB, the

option for latency in Memory mode decreases to 5 GB/s quickly

while the optimization mode for bandwidth sustains at 40 GB/s. The

bandwidth spilling policy achieves high bandwidth as predicted by

the analytical model. When data size exceeds 1 TB, our policy still

sustains 76 to 97 GB/s, about 2x improvement compared to the best

performance in Memory mode. Additionally, our policy enables

much larger data size at 1.54 TB, enabling 20% more data size than

Memory mode.

5.2 Write Isolation

Previous sections have shown that write accesses to PMM result

in severe performance degradation, high energy consumption, and

write amplification. Separating write accesses to DRAM becomes

critical, which is automatically achieved in Memory mode. In App

Direct mode, one natural question is how much more improvement

in performance and power is achievable if fine-grained policies are

employed. To explore the potential for improvement, we employ

NVM-aware-splitting allocation for read-intensive data structures

and allocate write-intensive data onto DRAM in the STREAM [20]
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Figure 15: The total energy on two sockets for each gigabyte

of data in the stream benchmark. Each bar is partitioned

into CPU (bottom) and memory energy (top).

benchmark. We perform experiments on four dual-socket configu-

rations in Table 2.

Our results show that this write isolation policy improves mem-

ory bandwidth at large data size and avoids the throttling effect

due to writes to PMM. At medium data sizes in Figure 14, Memo-

ryMode configuration can effectively bridge the performance gap

between DRAM and PMM, achieving 46–89% DRAM bandwidth.

The write isolation policy starts outperforming the MemoryMode

when data size is larger than 32 GB. At the largest data size, it sus-

tains 83 GB/s bandwidth while the Memory mode reaches 27 GB/s.

Note that in Figure 5, using a read-only benchmark, MemoryMode

achieves much higher utilization of DRAM bandwidth than using

the stream copy benchmark. We attribute the difference to the throt-

tling effect, where evicting dirty cache lines in DRAM results in long

latency writes to PMM, indirectly impacting the read access to that

cache line. The write isolation policy could effectively bypass this

throttling effect to improve performance. The trade-off between

the porting efforts in fine-grained policies and the performance

in Memory mode depends on the data size and the complexity in

managing data explicitly in an application.

The write-isolation policy reduces energy cost by up to 8.4 times

compared to PMM and 3.9 times compared to MemoryMode. In

Figure 15, MemoryMode shows increasing energy cost per gigabyte

of data when the total data size increases. The CPU energy consti-

tutes only 55% of the total energy at small data size but increases

to 74% at the largest data size. As the bandwidth of MemoryMode

Figure 16: Measured memory power on one socket at dif-

ferent traffic distribution between NVM and DRAM (x-axis)

and arithmetic intensities (y-axis).

is decreasing when the data size increases, i.e., the dynamic CPU

power should be decreasing, we attribute the increased CPU energy

mostly due to the increased static energy for prolonged execution

time. For energy-aware applications, the potential energy saving

from the write-isolation policy could well justify the porting efforts.

5.3 Traffic Distribution

In this section, we sweep the arithmetic intensities in workloads

to explore the real impact of an NVM-DRAM memory system on

different workloads. Arithmetic intensity is defined as the num-

ber of (floating-point) operations per byte from the memory sub-

system [33]. In general, high arithmetic intensity results in low

sensitivity to the memory system and vice versa. We employ a

modified stream accumulate benchmark to sweep the arithmetic

intensity and to establish the roofline model [33] of theoretical peak

performance on our platform. Note that this exploration focuses on

peak performance, and thus studies read traffic only because writes

to NVM severely reduce performance. Our objective of this study

is to control the memory traffic to DRAM and NVM at fine grain

to understand how to adapt the traffic distribution based on the

application sensitivity, and eventually achieve better performance

or energy efficiency. Hence, we combine the roofline model and

power consumption to established the power-line, and arch-line

model [4] for guiding the search for the optimal distribution.

The first part of our exploration is to establish power consump-

tion at different arithmetic intensities and traffic distribution. Fig-

ure 16 presents a heat map of memory power on one socket, in-

cluding static and dynamic power. In general, memory power in all

distributions decreases steadily when arithmetic intensity increases

along the y-axis. Memory-intensive workloads, whose intensity is

lower than 21 on the y-axis, have power consumption directly in-

crease along the x-axis, i.e., increased traffic distribution to DRAM.

For the most memory-intensive workload (2−3 on the y-axis), dis-

tributing all memory traffic to DRAM (the right end on the x-axis)

results in the highest power consumption, at about 95 watt. With

100% distribution to NVM, the memory consumption is 54 watt.

Note that this 54 watt power still includes the static power from
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Figure 17: Established models for peak performance and power efficiency at various arithmetic intensities.

DRAM DIMMs. Applications with medium and high arithmetic

intensity (21–24 on the y-axis), however, may consume more power

when the traffic distribution is skewed. For these workloads, adapt-

ing the memory traffic distribution to PMM could lower power

consumption.

The power-line [4] usually depicts a power peak at a certain

arithmetic intensity when the arithmetic intensity increases from

low to high. Figure 17a reports the total power consumption of

the platform, including CPU and memory on both sockets. We

can observe the power peak at 21 on the x-axis for most memory

distributions except 0% and 10% distribution. A 0% distribution

indicates that all traffic goes to DRAM and we find that it consumes

over 480 watt power. Unlike other distributions, this distribution

shows no power peak, which is possibly due to the power capping

on the platform. Throughout different arithmetic intensities, the

gap between 0% and 100% distribution could even reach 125 watt.

Interesting, at low compute intensity, distributing as low as 10%

traffic to NVM saves up to 40 watt power, resulting in a wide gap

between the 0% and 10% lines on Figure 17a.

The roofline model [33] links the memory bandwidth and oper-

ation intensity to theoretical peak performance for exploring op-

timization opportunities. Figure 17b presents the derived roofline

for our platform. The model indicates that the limiting factor of

performance changes from the memory system to the computing

capability at 20 to 21 arithmetic intensity. Below this, full distribu-

tion to DRAM brings the highest performance. Once the arithmetic

intensity is higher than 21, a full distribution to either DRAM or

NVM causes suboptimal performance compared to other distribu-

tions. Although high arithmetic intensity is expected to result in

low sensitivity to the memory system, our results show that the

traffic distribution between NVM and DRAM could still impact

the performance. Finally, we derive the arch-line of energy effi-

ciency [4] in Figure 17c to study the impact of traffic distribution on

energy efficiency. The results again diverge at arithmetic intensity

21, where distributing 10% or 90% traffic to NVM brings higher

efficiency than other distributions in traffic.

6 RELATEDWORK

Extensive works have proposed different materials and architec-

tures for implementing non-volatile memories, including spin

torque transfer RAM (STT-RAM), resistive RAM (RRAM), and phase

changing memory (PCM) [8, 17, 26, 30]. While these works demon-

strate prototype designs, the Optane DC PMM in this study is

the first commercially available hardware that provides enormous

memory capacity.

Many studies have extensively investigated software techniques

for improving application performance on heterogeneous memory

systems even before the NVM hardware is available [5, 23, 34].

These works identify data structures or pages that are critical for

performance and manage data placement between different memo-

ries, either statically or at runtime. Another group of studies focuses

on identifying future system designs for improving application per-

formance or energy consumption [14, 16, 24]. As the hardware was

unavailable, most works used software or hardware emulators or

cycle-accurate simulators for evaluation.

Since the Optane DC PMM becomes available, several groups

have performed extensive studies from different perspectives. [13]

uses representative in-memory database workloads, which are crit-

ical for data centers. Their work also shows the advantage of NVM-

specific file system [35]. [6] optimizes the Galois framework [21] to

mitigate the NUMA effect inmemorymode. They also compared the

scalability of Galois on a single machine with the distributed-system

implementation. In addition to their findings, our work provides

an evaluation of power and energy efficiency at various memory

configurations as well as fine-grained traffic controls between NVM

and DRAM.

7 CONCLUSION

Byte-addressable NVMs are a promising new tier in the memory

hierarchy on future large-scale systems. In this work, we evaluated

the first commercially available byte-addressable NVM based on

the Intel Optane R© DCTM technology. We expect that memory con-

figurations that require no application modifications would likely

be the first deployment efforts. Thus, our evaluation quantified

the performance of eight memory configurations, and more im-

portantly, provide guidelines for selecting suitable configurations

for applications. Our evaluation of five graph applications shows

that DRAM-cached NVM could bring reasonable performance for

large graphs. The second part of our study explores the potential

of further improvement with fine-grained control of the memory
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traffic between NVM and DRAM. Our results show that Optane

is advantageous in enabling power-efficient workloads when data

is carefully partitioned and placed on different memories. With

porting efforts to support bandwidth-spilling and write-isolation

policies, applications could achieve higher bandwidth and lower en-

ergy cost than the coarse-grained memory configurations. Finally,

our work provides first-hand insights for optimizing applications

on the emerging memory systems that feature byte-addressable

NVM.
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